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ABSTRACT

We consider the Mn(t)/Mn(t)/S queue with catastrophes.
The bounds on the rate of convergence to the limit regime
and the estimates of the limit probabilities are obtained.
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1. INTRODUCTION

The simplest (stationary) queueing models with catastro-
phes have been studied some years ago, see for instance
[1–6, 9]. Namely, when the queue is not empty, catastro-
phes may occur with the respective rates. The effect of
each catastrophe is to make the queue instantly empty. Si-
multaneously, the system becomes ready to accept new cus-
tomers. Nonstationary Markovian queueing models (birth-
death processes) with catastrophes have been studied in our
previous papers [11, 13] in the case if catastrophes rates do
not depend on the length of queue. It is extremely dif-
ficult to obtain general results for arbitrary forms of the
birth, death and catastrophe intensities and therefore we
must content ourselves with obtaining various types of ap-
proximations. Here we consider general Markovian model of
Mn(t)/Mn(t)/S queue with catastrophes and suppose that
the catastrophes rates depend on the length of queue. Let
X = X(t), t ≥ 0 be a queue-length process for this model.
Then X = X(t) is a birth and death process (BDP) with
catastrophes and birth, death, and catastrophe rates λn(t) =
νnλ(t), µn(t) = ηnµ(t) and ξn(t) = ζnξ(t) respectively.

Let pij(s, t) = Pr {X(t) = j |X(s) = i} for i, j ≥ 0, 0 ≤ s ≤
t be the transition probability functions of the process X =
X(t) and pi(t) = Pr {X(t) = i} be the state probabilities.

The probabilistic dynamics of the process is represented by
the forward Kolmogorov system of differential equations:


dp0
dt

= −λ0(t)p0 + µ1(t)p1 +
∑
k≥1 ξk(t)pk,

dpk
dt

= λk−1(t)pk−1 − (λk(t) + µk(t) + ξk(t)) pk+
µk+1(t)pk+1, k ≥ 1.

(1)

We denote by p(t) = (p0(t), p1(t), . . . )T , t > 0 the column
vector of state probabilities and by A(t) = {aij(t), t ≥ 0}
the matrix related to (1). One can see that A (t) = QT (t),
where Q(t) is the intensity (or infinitesimal) matrix for X(t).

We assume that all basic arrival, service and catastrophe
rates λ(t), µ(t) and ξ(t) are locally integrable on [0,∞) func-
tions. Moreover, we suppose that 0 ≤ νn + ηn + ζn ≤ M ,
hence we can rewrite the system (1) in the form

dp

dt
= A (t) p, p = p(t), t ≥ 0, (2)

as a differential equation in the space of sequences l1 with
bounded operator function A(t). Therefore we can apply the
general approach to employ the logarithmic norm of a ma-
trix for the study of the problem of stability of Kolmogorov
system of differential equations associated with nonhomoge-
neous Markov chains. The method is based on the following
two components: the logarithmic norm of a linear operator
and a special similarity transformation of the matrix of in-
tensities of the Markov chain considered, see the respective
definitions, bounds, references and other details in [10–13].



2. WEAK ERGODICITY AND
RELATED BOUNDS

We first consider some definitions.

Definition 1. A Markov chain X(t) is called weakly er-
godic, if ‖p∗(t) − p∗∗(t)‖ → 0 as t → ∞ for any initial
conditions p∗(0),p∗∗(0), where ‖x‖ is l1-norm.

Here p∗(t) and p∗∗(t) are the respective solutions of (2) and
‖x‖l1 = ‖x‖1 =

∑
i |xi|.

Put Ek(t) = E {X(t) |X(0) = k } ( then the respective initial
condition of system (2) is the k − th unit vector ek).

Definition 2. Let X(t) be a Markov chain. Then ϕ(t)
is called the limiting mean of X(t) if

lim
t→∞

(ϕ(t)− Ek(t)) = 0

for any k.

We study the ergodic properties of the queue-length process
for the following important situations:

(i) essential catastrophe rates for any queue length;

(ii) sufficiently large service rates;

(iii) large arrival rates, and essential rates of catastrophes
if the length of queue is proportional to a positive integer
number.

In all of these cases we obtain weak ergodicity of X(t) with
sufficiently sharp explicit bounds on the speed of conver-
gence and an existence of the limiting mean.

The results of next theorems are formulated in terms of the
auxiliary sequences {di}, which do not possess any proba-
bilistic meaning. A detailed analysis of their properties is
given in [7], see also [8]. We note that they are a sort of
counterpart of the Lyapunov functions.

Let {di}, i ≥ 1, d−1 = d0 = 1, be a sequence of positive
numbers. Put

αk (t) = λk (t) + µk+1 (t) + ξk+1 (t)−
dk+1

dk
λk+1 (t)− dk−1

dk
µk (t) , k ≥ 0, (3)

and

α (t) = inf
k≥0

αk (t) . (4)

Firstly we consider the following general statement.

Theorem 1. Let a process with rates λk(t), µk(t), and
ξk(t) be given. Let us assume that there exists a sequence
{di} such that d = infi≥1 di > 0, and

∞∫
0

α(t) dt = +∞. (5)

Then X(t) is weakly ergodic, and the following bound holds:

‖p∗(t)− p∗∗(t)‖1 ≤
4

d
e
−

t∫
0
α(τ) dτ∑

i≥1

gi|p∗i (0)− p∗∗i (0)|, (6)

for any t ≥ 0, where gi =
∑i−1
k≥0 dk .

Proof. The property
∑∞
i=0 pi(t) = 1 for any t ≥ s allows to

put p0(t) = 1−
∑
i≥1 pi(t) (for ordinary BDP see this way of

study, for instance, in [7, 10]), then we obtain the following
system from (2)

dz(t)

dt
= B(t)z(t) + f(t), (7)

where z(t) = (p1(t), p2(t), . . . )T , f(t) = (λ0(t), 0, 0, . . . )T ,
B(t) = (bij(t))

∞
i,j=1 and

bij =



−(λ0 + λ1 + µ1 + ξ1), if i = j = 1,
µ2 − λ0, if i = 1, j = 2,
−λ0, if i = 1, j > 2,

−(λj + µj + ξj), if i = j > 1,
µj , if i = j − 1 > 1,
λj , if i = j + 1 > 1,
0, otherwise .

(8)

This is a linear non-homogeneous differential system the so-
lution of which can be written as

z(t) = V (t, 0)z(0) +

∫ t

0

V (t, τ)f(τ) dτ, (9)

where V (t, z) is the Cauchy operator of (7), see [8]. Recall
that the Cauchy operator is defined as follows:

V (t, s) = I+

t∫
s

B (t1) dt1 +

t∫
s

B (t1)

t1∫
s

B (t2) dt2dt1 + . . . ,

and V (t, s) = e(t−s)B for the case of stationary process
(B(t) ≡ B).

Consider the matrix

D =


d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·
...

...
. . .

. . .

 (10)



and the space of sequences

`1D = {z = (p1, p2, . . .) : ‖z‖1D = ‖Dz‖1 <∞} , (11)

as in [10], where di are some positive numbers.

We have

D−1 =



d−1
1 −d−1

2 0
. . .

0 d−1
2 −d−1

3 0
. . .

. . . 0
. . . d−1

3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .


.

Applying this transformation to the matrix B(t) in (7) , we
arrive to the matrix DB(t)D−1 =

(
b1ij(t)

)∞
i,j=1

, where

b1ij =


−(λj−1 + µj + ξj), if i = j,

di−1
di

µi, if i = j − 1,
dj−1
dj

λj , if i = j + 1,

0, otherwise .

(12)

Now we can study BDP with catastrophes using the loga-
rithmic norm and related bounds, see definitions and detail
discussion in [7, 8, 10].

We recall that the logarithmic norm of operator function is
defined as the following limit:

γ (B) = lim
h→+0

‖I +B (t)h‖ − 1

h
,

particularly, γ (B)1 = supi

(
bii +

∑
j 6=i |bji|

)
. The respec-

tive bound for Cauchy operator V (t, s) holds:

‖V (t, s)‖ ≤ e
t∫
s
γ(τ) dτ

,

see for instance [8, 10].

We have now the following bound of the logarithmic norm
γ (B(t)) in l1D:

γ (B)1D = γ
(
DB(t)D−1)

1
=

sup
i≥0

(
di+1

di
λi+1(t) +

di−1

di
µi(t)− (13)

(λi(t) + µi+1(t) + ξi+1(t))) = sup (−αk (t)) = −α(t),

in accordance with (3). Hence

‖V (t, s)‖1D ≤ e
t∫
s
γ(τ) dτ

.

Therefore the following inequality holds:

‖p∗(t)− p∗∗(t)‖1D ≤ e
−

t∫
s
α(τ) dτ

‖p∗(s)− p∗∗(s)‖1D. (14)

Consider `1 and `1D norms of a vector z = (z1, z2, . . . )
T ,

then

d‖z‖1 ≤
∑
i≥1

dizi = d1

∣∣∣∣∣∣
∑
i≥1

zi +
∑
i≥2

−zi

∣∣∣∣∣∣
+

d2

∣∣∣∣∣∣
∑
i≥2

zi +
∑
i≥3

−zi

∣∣∣∣∣∣
+ · · · ≤ (15)

d1

∣∣∣∣∣∣
∑
i≥1

zi

∣∣∣∣∣∣+ 2d2

∣∣∣∣∣∣
∑
i≥2

zi

∣∣∣∣∣∣+ · · · ≤ 2‖z‖1D.

On the other hand, ‖p∗−p∗∗‖1 ≤ 2‖z‖1 for any p∗,p∗∗ and
corresponding z. Thereby we prove our claim is true.

Corollary 1. Let, in addition, the numbers di grow suf-
ficiently fast so that inf

k≥1

dk
k

= ω > 0. Then X(t) has the

limiting mean, say φ(t), and the following bound holds:

|φ(t)− Ek(t)| ≤ 4

dω
e
−

t∫
0
α(τ) dτ

‖p(0)− ek‖1D. (16)

Moreover, Theorem 1 gives us the explicit bounds for the
limiting regime and limiting mean of X(t).

Theorem 2. Let the assumptions of Theorem 1 be satis-
fied. Then the following bounds hold:

lim inf
t→∞

Pr (X(t) < k) ≥ (17)

1− d1ν0∑k
j=1 dj

lim sup
t→∞

∫ t

0

λ(u)e−
∫ t
u α(τ) dτ du,

and

lim sup
t→∞

Ep(t) ≤ ν0
W

lim sup
t→∞

∫ t

0

λ(u)e−
∫ t
u α(τ) dτ du, (18)

where W = infk≥1

∑k
i=1 di

k
.

Proof.

We have for any solution of (7) in 1D-norm

‖z(t)‖ = ‖V (t, 0)z(0) +

∫ t

0

V (t, z)f(z) dz‖ ≤

e−
∫ t
0 α(τ) dτ‖z(0)‖+ d1ν0

∫ t

0

λ(u)e−
∫ t
u α(τ) dτ du, (19)



hence

lim supt→∞‖z(t)‖1D ≤

d1ν0lim supt→∞

∫ t

0

λ(u)e−
∫ t
u α(τ) dτ du. (20)

We consider only nonnegative solutions of (7), then

‖z‖1D = ‖Dz‖ = d1p1 + (d1 + d2)p2 + . . . , (21)

and therefore∑
i≥k

pi ≤
1∑k
j=1 dj

(
k∑
j=1

djpk + . . .

)
≤ 1∑k

j=1 dj
‖z‖1D,

(22)
now

lim sup
t→∞

∑
i≥k

pk(t) ≤ (23)

d1ν0∑k
j=1 dj

lim supt→∞

∫ t

0

λ(u)e−
∫ t
u α(τ) dτ du,

and we obtain (17).

Finally, bound (18) follows from the inequality

∑
k≥1

kpk ≤
1

W

∑
k≥1

k∑
j=1

djpk =
1

W
‖z‖1D. (24)

Theorem 3. Let under assumptions of the previous Corol-
lary all intensities be 1-periodic functions of t. Then there
exists 1-periodic limiting regime, say π(t) = (π0(t), π1(t), . . . )T ,
and the respective 1-periodic limiting mean φ(t) =

∑
k kπk(t).

Moreover, the following bounds hold:

‖p(t)− π(t)‖1 ≤ 4e
−

t∫
0
α(τ) dτ

‖p(0)− π(0)‖1D, (25)

|φ(t)− Ek(t)| ≤ 4

dω
e
−

t∫
0
α(τ) dτ

‖π(0)− ek‖1D. (26)

3. APPLICATIONS OF THEOREM 1

Consider firstly the situation (i): essential catastrophe rates
for any queue length.

Theorem 4. Let the intensities of birth, death and catas-
trophes be such that the sequence {ηn} is increasing, the se-
quence {νn} is decreasing, infn ζn = ζ > 0 and moreover,
let there exist ε > 0 such that∫ ∞

0

(ζξ(t)− εν0λ(t)) dt = +∞. (27)

Then queue-length process X(t) is weakly ergodic and has the
limiting mean. Moreover, choosing the limiting regime π(t)
and limiting mean φ(t), corresponding to the initial condi-
tion X(0) = 0, we have the following bounds:

‖p(t)− π(t)‖1 ≤ 4 (1 + ε)k ε−1e
−

t∫
0
(ζξ(τ)−εν0λ(τ)) dτ

, (28)

and

|Ek(t)− E0(t)| ≤ 4 (1 + ε)k

εω
e
−

t∫
0
(ζξ(τ)−εν0λ(τ)) dτ

, (29)

for any X(0) = k.

Proof. Put d−1 = d0 = 1, dk+1 = (1 + ε)dk, k ≥ 0. Then
we obtain the following bound:

αk (t) = λk (t) + µk+1 (t) + ξk+1 (t)−
dk+1

dk
λk+1 (t)− dk−1

dk
µk (t) ≥ (30)

(νk − (1 + ε)νk+1)λ (t) +

(
ηk+1 −

1

1 + ε
ηk

)
µ (t) +

ζξ (t) ≥ ζξ (t)− ενkλ (t) .

Then our claim follows from (6) and (16).

Situation (ii): sufficiently large service rates.

Theorem 5. Let the intensities of birth, death and catas-
trophes be such that the sequence {ηn} is increasing, the se-
quence {νn} is decreasing and let moreover, there exist ε > 0
such that ∫ ∞

0

(η1µ(t)− (1 + ε) ν0λ(t)) dt = +∞. (31)

Then queue-length process X(t) is weakly ergodic and has the
limiting mean. Moreover, choosing the limiting regime π(t)
and limiting mean φ(t), corresponding to the initial condi-
tion X(0) = 0, we have the following bounds:

‖p(t)− π(t)‖1 ≤ 4 (1 + ε)k ε−1e
− ε

1+ε

t∫
0
(η1µ(τ)−(1+ε)ν0λ(τ)) dτ

,
(32)

and

|Ek(t)− E0(t)| ≤ 4 (1 + ε)k

εω
e
− ε

1+ε

t∫
0
(η1µ(τ)−(1+ε)ν0λ(τ)) dτ

,

(33)
for any X(0) = k:

Proof. Put again d−1 = d0 = 1, dk+1 = (1 + ε)dk, k ≥ 0.
Then we have the following bound:



αk (t) = λk (t) + µk+1 (t) + ξk+1 (t)

−dk+1

dk
λk+1 (t)− dk−1

dk
µk (t) ≥ (34)

(νk − (1 + ε)νk+1)λ (t) +

(
ηk+1 −

1

1 + ε
ηk

)
µ (t) ≥

ε

1 + ε
(ηkµ (t)− (1 + ε) νkλ (t)) .

Then our bounds follows from (6) and (16).

Situation (iii): large arrival rates, and essential rates of
catastrophes if the length of queue is proportional to a pos-
itive integer number.

Theorem 6. Let the intensities of birth, death and catas-
trophes be such that the sequence {ηn} → η∞ is increasing,
the sequence {νn} → ν∞ is decreasing and let moreover,
there exist δ > 0, a natural number N such that infn ζnN =
ζ > 0 and ∫ ∞

0

g(t) dt = +∞, (35)

where

g(t) = min (ζξ(t)− δν0λ(t)− δη∞µ(t) ,

ν∞λ(t)− (1 + δ) η1µ(t)) . (36)

Then queue-length process X(t) is weakly ergodic and has
the limiting mean.

Proof.

Put now d−1 = d0 = 1, dk+1 = (1 + ε)−1dk, for k 6= iN − 1,
and dk+1 = (1 + ε)Ndk if k = iN − 1, where ε < δ is a
positive number such that (1 + ε)N − 1 < δ.

We have for k 6= iN − 1 the following estimates:

αk (t) = λk (t) + µk+1 (t) + ξk+1 (t)−
dk+1

dk
λk+1 (t)− dk−1

dk
µk (t) ≥ (37)(

νk −
dk+1

dk
νk+1

)
λ (t) +

(
ηk+1 −

dk−1

dk
ηk

)
µ (t) ≥

ε

1 + ε
(ν∞λ (t)− (1 + ε) η1µ (t)) .

For k = iN − 1 we obtain

αk (t) = λk (t) + µk+1 (t) + ξk+1 (t)−
dk+1

dk
λk+1 (t)− dk−1

dk
µk (t) ≥

(
νk − νk+1(1 + ε)N

)
λ (t) +

(ηk+1 − (1 + ε) ηk)µ (t) + ζξ (t) ≥ (38)

ζξ (t)− εη∞µ (t)−
(

(1 + ε)N − 1
)
ν0λ (t) .

Finally our claim follows from Theorem 1.

Corollary 2. Let the assumptions of Theorem 6 be ful-
filled. Then, choosing the limiting regime π(t) and limiting
mean φ(t), corresponding to the initial condition X(0) = 0,
we have the following bounds:

‖p(t)− π(t)‖1 ≤
4gk
d
e
−

t∫
s
G(τ) dτ

, (39)

and

|Ek(t)− E0(t)| ≤ 4gk
dω

e
−

t∫
0
G(τ) dτ

, (40)

for any X(0) = k , where d = min dk = (1 + ε)−(N−1),
gk =

∑
i≤k−1 di, and

G(t) = min

(
ε

1 + ε
(ν∞λ (t)− (1 + ε) η1µ (t)) ,

ζξ (t)− εη∞µ (t)−
(

(1 + ε)N − 1
)
ν0λ (t)

)
.

4. EXAMPLE

Consider the queuing model with S servers, impatient cus-
tomers and catastrophes. Let X(t) be the respective queue-
length process. Then X(t) is a birth-death-catastrophes

process with arrival rates λn(t) = λ(t)
min(n,S)

; service rates

µn(t) = min(n, S)µ(t) and catastrophes rates ξn(t), and we
can apply Theorems 4-6 for the study of this process in dif-
ferent situations.

(i). Let S = 100, λ(t) = 240 + cos 2πt, µ(t) = 1 + sin 4πt,
ξn(t) = 100 + sin 4πt, n ≥ 1 be arrival, service and catastro-
phe rates rates respectively. Then the assumptions of The-
orem 4 are fulfilled for ε = 0.4, we can apply the approach
of [11] and find the limit characteristics approximately with
error 10−5 as the respective characteristics of truncated pro-
cess with n = 100 and t ∈ [8.0, 9.0]. The corresponding
graphs are shown in Figures 1-3.

(ii). Let S = 100, λ(t) = 240 + cos 2πt, µ(t) = 10 + sin 4πt,
ξn(t) = 2+sin 4πt

n
. Then the assumptions of Theorem 5 are

fulfilled for ε = 3.0, and we find the limit characteristics
approximately with error 10−5 as the respective characteris-
tics of truncated process with n = 65 and t ∈ [1.5, 2.5]. The
corresponding graphs are shown in Figures 4-6.

3. Let S = 5 λ(t) = 240 + cos 2πt, µ(t) = 1 + sin 4πt,

ξn(t) =

{
0, if n 6= 3k,

153 + sin 4πt, if n = 3k
, then the assump-

tions of Theorem 6 are fulfilled for ε = 0.15, and we find the
limit characteristics approximately with error 10−4 as the
respective characteristics of truncated process with n = 250
and t ∈ [6.0, 7.0]. The corresponding graphs are shown in
Figures 7-9.

One can compare the behavior of the limiting characteristics
of the queue-length process in these cases.
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Figure 1: Situation (i), approximation of the limit-
ing mean

Figure 2: Situation (i), approximation of the limit
behavior of J0(t) = Pr (X(t) = 0)

Figure 3: Situation (i), approximation of the limit
behavior of J10(t) = Pr (X(t) ≤ 10)



Figure 4: Situation (ii), approximation of the limit-
ing mean

Figure 5: Situation (ii), approximation of the limit
behavior of J0(t) = Pr (X(t) = 0)

Figure 6: Situation (ii), approximation of the limit
behavior of J10(t) = Pr (X(t) ≤ 10)

Figure 7: Situation (iii), approximation of the lim-
iting mean

Figure 8: Situation (iii), approximation of the limit
behavior of J0(t) = Pr (X(t) = 0)

Figure 9: Situation (iii), approximation of the limit
behavior of J10(t) = Pr (X(t) ≤ 10)


